GRADUATE STUDENT SEMINAR TALK: (2015 Feb.) Some functors from topological spaces to lie algebras and algebraic varieties
نویسنده
چکیده
A common theme in algebraic topology is to study functors from the homotopy category of topological spaces to various categories of algebraic objects, such as the classical homology functor, the cohomology functor and the homopoty functor. In this talk, I will introduce some functors from topological spaces to Lie algebras and algebraic varieties, and explore their properties. We can use these functors study the properties of the original topological spaces. We will also use these functors to study the finitely generated groups by studying the corresponding Eilenberg-MaClane spaces. At last, I will state some results from my joint work with Professor Alexander Suciu.
منابع مشابه
Realization of locally extended affine Lie algebras of type $A_1$
Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...
متن کاملRamification in Algebra and Geometry at Emory
s printed May 21, 2011 Sanghoon Baek (UNIVERSITY OF OTTAWA) Essential dimension of simple algebras and its application to algebraic groups of type An In this talk, we introduce the notion of essential dimension of an algebraic structure and discuss some recent results on the essential dimension of certain classes of central simple algebras. We also relate these results to the essential dimensio...
متن کاملOn categories of merotopic, nearness, and filter algebras
We study algebraic properties of categories of Merotopic, Nearness, and Filter Algebras. We show that the category of filter torsion free abelian groups is an epireflective subcategory of the category of filter abelian groups. The forgetful functor from the category of filter rings to filter monoids is essentially algebraic and the forgetful functor from the category of filter groups to the cat...
متن کاملUniversal Arrows to Forgetful Functors from Categories of Topological Algebra
We survey the present trends in theory of universal arrows to forgetful functors from various categories of topological algebra and functional analysis to categories of topology and topological algebra. Among them are free topological groups, free locally convex spaces, free Banach-Lie algebras, and more. An accent is put on relationship of those constructions with other areas of mathematics an...
متن کاملNEW METHODS FOR CONSTRUCTING GENERALIZED GROUPS, TOPOLOGICAL GENERALIZED GROUPS, AND TOP SPACES
The purpose of this paper is to introduce new methods for constructing generalized groups, generalized topological groups and top spaces. We study some properties of these structures and present some relative concrete examples. Moreover, we obtain generalized groups by using of Hilbert spaces and tangent spaces of Lie groups, separately.
متن کامل